Theoretical Study of O-Assisted Selective Coupling of Methanol on Au(111)

نویسندگان

  • Bingjun Xu
  • Jan Haubrich
  • Thomas A. Baker
  • Efthimios Kaxiras
  • Cynthia M. Friend
چکیده

We report the first systematic theoretical study of the oxidative self-coupling of methanol to form the ester, methylformate, on atomic-oxygen-covered Au(111) using density functional theory calculations. The first step in the process —dissociation of the O-H bond in methanol—has a lower barrier for transfer of the proton to adsorbed oxygen than for transfer of H to gold, consistent with experimental observations that O is necessary to initiate the reaction. The computed barrier for formation of methoxy (CH3O) and OH is 0.41 eV, compared with 1.58 eV calculated for the transfer of H to the clean Au surface. Several different pathways for the ensuing β-H elimination in CH3O(ads) to form formaldehyde have been considered, namely, attack by adsorbedO,OH, or a secondCH3O, and transfer to the Aumetal. Methoxy attacked by surface oxygen has the lowest calculated barrier, 0.49 eV, and leads to adsorbed H2CdO and OH. Subsequent coupling of methoxy and formaldehyde has no apparent barrier in the calculation, consistent with the experimental conclusion that β-H elimination is the rate-limiting step for the overall reaction. With the exception of surface oxygen, all other surface species have low diffusion barriers, suggesting that rearrangement and movement of these species from the preferred adsorption sites to configurations necessary for reactions occur readily, thus contributing to the activity for coupling on gold.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The O, OH and OOH-assisted selective coupling of methanol on Au-Ag(111).

Using density functional theory (DFT) calculations, we performed a thorough theoretical investigation on the catalytic mechanism of oxidative self-coupling of methanol with molecular oxygen on Au-Ag catalysts. It is found that molecular oxygen can be activated via a hydroperoxyl (OOH) intermediate by taking a hydrogen atom from co-adsorbed methanol with an energy barrier of 0.51 eV, which is ac...

متن کامل

Vapour-phase gold-surface-mediated coupling of aldehydes with methanol.

Selective coupling of oxygenates is critical to many synthetic processes, including those necessary for the development of alternative fuels. We report a general process for selective coupling of aldehydes and methanol as a route to ester synthesis. All steps are mediated by oxygen-covered metallic gold nanoparticles on Au(111). Remarkably, cross-coupling of methanol with formaldehyde, acetalde...

متن کامل

Switching Selectivity in Oxidation Reactions on Gold: The Mechanism of C−C vs C−H Bond Activation in the Acetate Intermediate on Au(111)

Carboxylates are important intermediates in oxidative reactions on gold, as they are precursors to carboxylic acids and CO2; they may also act as site-blockers in oxidative coupling of alcohols, thereby decreasing both catalyst activity and selectivity. We demonstrate that the reaction selectivity and pathways for a prototype carboxylate, acetate, adsorbed on Au(111), are dramatically altered b...

متن کامل

A theoretical survey on strength and characteristics of F•••F, Br•••O and Br•••Br interactions in solid phase

A quantum chemical investigation was carried out to study the properties of intermolecular F•••F, Br•••Br and Br•••O interactions in crystalline 1-bromo-2,3,5,6-tetrafluoro-nitrobenzene (BFNB). This system was selected to mimic the halogen-halogen as well as halogen bonding interactions found within crystal structures as well as within biological systems. We found that fluorine atoms have weak ...

متن کامل

Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces.

Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011